Искусственный интеллект: как и где изучать — отвечают эксперты

Р. Баранов, инновации. Комментарий об изучении основ ИИ для Tproger

03.07.2018


			Искусственный интеллект: как и где изучать — отвечают эксперты			Искусственный интеллект: как и где изучать — отвечают эксперты
Искусственный интеллект — это та сфера в мире IT, которая активно развивается и имеет как огромную популярность, так и много вопросов. Многие программисты хотят заниматься разработкой ИИ, но не знают с чего начать, поэтому мы решили поделиться с вами вопросом, который пришел от нашего подписчика:

«Хочу заниматься ИИ. Что стоит изучить? Какие языки использовать? В каких организациях учиться и работать?»

Мы обратились за разъяснением к нашим экспертам, а полученные ответы представляем вашему вниманию.

Роман Баранов, директор по развитию бизнеса IТ-компании Navicon

Прежде чем изучать искусственный интеллект, надо решить принципиальный вопрос: красную таблетку взять или синюю.

Красная таблетка — стать разработчиком и окунуться в жестокий мир статистических методов, алгоритмов и постоянного постижения непознанного. С другой стороны, не обязательно сразу кидаться в «кроличью нору»: можно стать управленцем и создавать ИИ, например, как менеджер проекта. Это два принципиально разных пути.

Первый отлично подходит, если вы уже решили, что будете писать алгоритмы искусственного интеллекта. Тогда вам надо начать с самого популярного направления на сегодняшний день – машинного обучения. Для этого нужно знать классические статистические методы классификации, кластеризации и регрессии. Полезно будет также познакомиться с основными мерами оценки качества решения, их свойствами… и всем, что попадется вам по пути.

Только после того, как база освоена, стоит проштудировать более специальные методы: деревья принятия решений и ансамбли из них. На этом этапе нужно глубоко погрузиться в основные способы построения и обучения моделей — они скрываются за едва приличными словами беггинг, бустинг, стекинг или блендинг.

Тут же стоит познать методы контроля переобучения моделей (еще один «инг» — overfitting).

И, наконец, совсем уж джедайский уровень — получение узкоспециальных знаний. Например, для глубокого обучения потребуется овладеть основными архитектурами и алгоритмами градиентного спуска. Если интересны задачи обработки естественного языка, то рекомендую изучить рекуррентные нейронные сети. А будущим создателям алгоритмов для обработки картинок и видео стоит хорошенько углубиться в свёрточные нейронные сети.

Две последние упомянутые структуры — кирпичики популярных сегодня архитектур: состязательных сетей (GAN), реляционных сетей, комбинированных сетей. Поэтому изучить их будет нелишним, даже если вы не планируете учить компьютер видеть или слышать.

Совсем другой подход к изучению ИИ — он же «синяя таблетка» — начинается с поиска себя. Искусственный интеллект рождает кучу задач и целых профессий: от руководителей ИИ-проектов до дата-инженеров, способных готовить данные, чистить их и строить масштабируемые, нагруженные и отказоустойчивые системы.

Так что при «менеджерском» подходе сначала стоит оценить свои способности и бэкграунд, а уже потом выбирать, где и чему учиться. Например, даже без математического склада ума можно заниматься дизайном ИИ-интерфейсов и визуализациями для умных алгоритмов. Но приготовьтесь: уже через 5 лет искусственный интеллект начнет вас троллить и называть «гуманитарием».

Основные методы ML реализованы в виде готовых библиотек, доступных к подключению на разных языках. Наиболее популярными языками в ML сегодня являются: C++, Python и R.

Есть множество курсов как на русском, так и английском языках, таких как Школа анализа данных Яндекса, курсы SkillFactory и OTUS. Но прежде чем инвестировать время и деньги в специализированное обучение, думаю, стоит «проникнуться темой»: посмотреть открытые лекции на YouTube с конференций DataFest за прошлые годы, пройти бесплатные курсы от Coursera и «Хабрахабра».

И когда все описанные знания будут усвоены, мы с нетерпением ждем юных падаванов к нам в команду Navicon, где поможем и научим, как подружиться с «искусственными интеллектуалами» в реальной жизни.

Полный текст статьи на сайте Tproger

Navicon выпустил решение для удаленной работы медпредставителей

Рост фармрынка обеспечен удорожанием продукции

Navicon получил статус золотого партнера Tableau

Почему роботы могут оказаться бесполезными и как этого не допустить

Принадлежащий Сбербанку фонд вложился в Kryon