Искусственный интеллект: как и где изучать — отвечают эксперты

Р. Баранов, инновации. Комментарий об изучении основ ИИ для Tproger

03.07.2018


			Искусственный интеллект: как и где изучать — отвечают эксперты			Искусственный интеллект: как и где изучать — отвечают эксперты
Искусственный интеллект — это та сфера в мире IT, которая активно развивается и имеет как огромную популярность, так и много вопросов. Многие программисты хотят заниматься разработкой ИИ, но не знают с чего начать, поэтому мы решили поделиться с вами вопросом, который пришел от нашего подписчика:

«Хочу заниматься ИИ. Что стоит изучить? Какие языки использовать? В каких организациях учиться и работать?»

Мы обратились за разъяснением к нашим экспертам, а полученные ответы представляем вашему вниманию.

Роман Баранов, директор по развитию бизнеса IТ-компании Navicon

Прежде чем изучать искусственный интеллект, надо решить принципиальный вопрос: красную таблетку взять или синюю.

Красная таблетка — стать разработчиком и окунуться в жестокий мир статистических методов, алгоритмов и постоянного постижения непознанного. С другой стороны, не обязательно сразу кидаться в «кроличью нору»: можно стать управленцем и создавать ИИ, например, как менеджер проекта. Это два принципиально разных пути.

Первый отлично подходит, если вы уже решили, что будете писать алгоритмы искусственного интеллекта. Тогда вам надо начать с самого популярного направления на сегодняшний день – машинного обучения. Для этого нужно знать классические статистические методы классификации, кластеризации и регрессии. Полезно будет также познакомиться с основными мерами оценки качества решения, их свойствами… и всем, что попадется вам по пути.

Только после того, как база освоена, стоит проштудировать более специальные методы: деревья принятия решений и ансамбли из них. На этом этапе нужно глубоко погрузиться в основные способы построения и обучения моделей — они скрываются за едва приличными словами беггинг, бустинг, стекинг или блендинг.

Тут же стоит познать методы контроля переобучения моделей (еще один «инг» — overfitting).

И, наконец, совсем уж джедайский уровень — получение узкоспециальных знаний. Например, для глубокого обучения потребуется овладеть основными архитектурами и алгоритмами градиентного спуска. Если интересны задачи обработки естественного языка, то рекомендую изучить рекуррентные нейронные сети. А будущим создателям алгоритмов для обработки картинок и видео стоит хорошенько углубиться в свёрточные нейронные сети.

Две последние упомянутые структуры — кирпичики популярных сегодня архитектур: состязательных сетей (GAN), реляционных сетей, комбинированных сетей. Поэтому изучить их будет нелишним, даже если вы не планируете учить компьютер видеть или слышать.

Совсем другой подход к изучению ИИ — он же «синяя таблетка» — начинается с поиска себя. Искусственный интеллект рождает кучу задач и целых профессий: от руководителей ИИ-проектов до дата-инженеров, способных готовить данные, чистить их и строить масштабируемые, нагруженные и отказоустойчивые системы.

Так что при «менеджерском» подходе сначала стоит оценить свои способности и бэкграунд, а уже потом выбирать, где и чему учиться. Например, даже без математического склада ума можно заниматься дизайном ИИ-интерфейсов и визуализациями для умных алгоритмов. Но приготовьтесь: уже через 5 лет искусственный интеллект начнет вас троллить и называть «гуманитарием».

Основные методы ML реализованы в виде готовых библиотек, доступных к подключению на разных языках. Наиболее популярными языками в ML сегодня являются: C++, Python и R.

Есть множество курсов как на русском, так и английском языках, таких как Школа анализа данных Яндекса, курсы SkillFactory и OTUS. Но прежде чем инвестировать время и деньги в специализированное обучение, думаю, стоит «проникнуться темой»: посмотреть открытые лекции на YouTube с конференций DataFest за прошлые годы, пройти бесплатные курсы от Coursera и «Хабрахабра».

И когда все описанные знания будут усвоены, мы с нетерпением ждем юных падаванов к нам в команду Navicon, где поможем и научим, как подружиться с «искусственными интеллектуалами» в реальной жизни.

Полный текст статьи на сайте Tproger

Gartner включил Navicon в список поставщиков CRM для фармацевтических и биотехнологических компаний

Navicon стал «Партнёром года» Microsoft в России

Свободная касса. Открытость фискальных данных на руку не только производителям

Navicon предложит фармкомпаниям и FMCG-сектору решения SAP

Navicon и AnyLogic помогут российским компаниям управлять логистикой